
ar
X

iv
:c

on
d-

m
at

/0
41

04
98

 v
1

 2
0

O
ct

 2
00

4
Understanding Search Trees via Statistical Physics

Satya N. Majumdar 1,2, David S. Dean 2 and P.L. Krapivsky 3

1Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud. Bât. 100. 91405 Orsay Cedex. France
2Laboratoire de Physique Theorique (UMR C5152 du CNRS), Université Paul Sabatier, 31062 Toulouse Cedex. France

3 Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
(October 20, 2004)

We study the random m-ary search tree model (where m stands for the number of branches of a
search tree), an important problem for data storage in computer science, using a variety of statistical
physics techniques that allow us to obtain exact asymptotic results. In particular, we show that the
probability distributions of extreme observables associated with a random search tree such as the
height and the balanced height of a tree have a traveling front structure. In addition, the variance
of the number of nodes needed to store a data string of a given size N is shown to undergo a striking
phase transition at a critical value of the branching ratio mc = 26. We identify the mechanism of
this phase transition, show that it is generic and occurs in various other problems as well. New
results are obtained when each element of the data string is a D-dimensional vector. We show that
this problem also has a phase transition at a critical dimension, Dc = π/ sin−1

(

1/
√

8
)

= 8.69363

Keywords: Search trees, Fragmentation, Traveling Fronts, Phase Transition

PACS numbers: 02.50.-r, 89.20.Ff, 89.75.Hc

I. INTRODUCTION

‘Search Trees’ are the objects of key interest in an important area of computer science called ‘Sorting and Searching’
[1] which deals with the basic question: How does one store the incoming data to a computer in an efficient way so
that one spends the minimum time in searching a given data element if required later? Amongst various search
algorithms, the tree based sorting and search algorthims turn out to be the most efficient ones. One of the simplest
such algorithms is the so called ‘binary search algorithm’ (BSA) which can be understood by the following simple
example. Consider a data string consisting of N elements which are labelled by the N integers: {1, 2, . . . , N}. These
could be the months of the year or the names of people etc. Let us assume that this data appears in a particular
order, say {6, 4, 5, 8, 9, 1, 2, 10, 3, 7} for N = 10 integers. This data is first stored on a binary tree following the simple
dynamical rule: the first element 6 is stored at the root of the tree (see Fig. 1). The next element in the string is
4. We compare it with 6 at the root and since 4 < 6, we store 4 in the left daughter node of the root. Had it been
bigger than the root 6, we would have stored it in the right daughter node. The next element in the string is 5. We
again start from the root, see that 5 < 6, so we go to the left branch. There we encounter 4 and we find 5 > 4, so we
go the right daughter node of 4. This process is continued till all the N = 10 elements are assigned their nodes and
we get a unique binary search tree (BST) (see Fig. 1) for this particular data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}.

6

4 8

1 5 7 9

2

3

10

H=5

h=3

HEIGHT

BALANCED HEIGHT

FIG. 1. The binary search tree associated with the data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}.

Once the data is stored on the tree, it takes very little time to search a required element. For example, suppose we
are looking for the element 7. We start from the root and comparing with 6 at the root, we know that 7 must be on
the right branch since 7 > 6. We then go down one level and next compare 7 with 8 (see Fig. 1) and since 7 < 8,
we look in the left subtree below 8 and immediately find 7. Thus, by construction, we eliminate searching one half
of the subtrees at every level. This makes the search process very efficient. In fact, typical search time to find an
element is tsearch = D where D is the depth of the element in the tree. Since, roughly speaking, 2D ∼ N , one gets
tsearch ∼ O(log N), which is far better than linear search that takes tsearch ∼ O(N).

1

An immediate generalization of a BST is an m-ary search tree where the tree has m branches. The BST corresponds
to m = 2. An m-ary search tree is constructed in the following way. Each node of the tree can now hold at most
(m − 1) elements. One first collects the first (m − 1) elements of the data string and stores them together in the
root of the tree in an ordered sequence x1 < x2 . . . < xm−1 [see Fig. 2 for m = 3]. Next when the m-th element
arrives, one compares it first with x1. If xm < x1, the new element xm is assigned to the leftmost daughter node of
the root. If x1 < xm < x2, xm goes to the daughter node in the second branch and so on. Each subsequent incoming
element is assigned to either of the m branches according to this above rule. As an example, the same data string
{6, 4, 5, 8, 9, 1, 2, 10, 3, 7} of size N = 10 is stored on a m = 3 tree in Fig. 2. Note that for m > 2, some of the nodes
of the tree are saturated to their capacity, i.e., are fully occupied with (m − 1) elements, while some others are only
partially occupied.

4, 6

1, 2 8, 9

3

5

7 10
H=3

h=2

no. of occupied nodes: n=7

FIG. 2. The m = 3 search tree associated with the data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7}.

Once an m-ary tree is constructed, one can define a number of observables associated with the tree which provides
information about the structure of the tree. The knowledge of how these observables depend on the data size N is of
central importance in ‘sorting and searching’. Amongst many observables, we focus here on 3 central objects:

1. the height HN of the tree which is defined as the distance of the farthest node from the root. For example, in
Fig. 2, we have H = 3. The height HN measures the maximum possible time to search an element, i.e., it is a
measure of the worst case scenario.

2. the balanced height hN of the tree, defined as the maximum depth upto which the tree is balanced, i.e., all the
nodes upto that level are at least partially occupied. In the example of Fig. 2 we have h = 2. Balancing a tree
is important for optimizing search algorithms and hence hN is an important observable.

3. the number of non-empty nodes nN of the tree which tells us how many nodes typically one needs to store a
data of size N . For example, in Fig. 2, one has n = 7. Note that for the binary case m = 2, one has trivially
nN = N since each node can contain only one element. However, for m > 2, nN becomes a variable since some
of the nodes may only be partially filled.

Usually the data arrives at a computer in random order. To study this situation, one considers the simplest model
called the ‘random m-ary search tree model’ (RmST) where one assumes that the incoming data string can arrive
in any of the N ! possible order or sequence, each with equal probability. For each of these sequences, one has an
m-ary tree and the associated observables HN , hN and nN . As the sequence changes, the corresponding tree changes
and hence these observables also take on different values. For example, in Fig. 3, we show two sequences, their
corresponding m = 3 trees and the values of the 3 observables. The central question of importance is: given that all
the N ! sequences occur with equal probability, what are the statistics of HN , hN and nN? For example, what are the
averages, variances or even the full probability distributions of these observables?

{6, 4, 5, 8, 9, 1, 2, 10, 3, 7} {8, 6, 9, 2, 1, 5, 3, 4, 7, 10}

4, 6

1, 2 5 8,9

1073

6,8

1, 2 7 9,10

3, 5

4

H=3, h=2, n=7 H=4, h=2, n=6
FIG. 3. The m = 3 search trees associated respectively with the data strings {6, 4, 5, 8, 9, 1, 2, 10, 3, 7} and

{8,6,9,2,1,5,3,4,7,10}.

2

The statistics of HN and hN have been studied by computer scientists over the past two decades and many nontrivial
results have been found [2–5]. For example, the average height and the average balanced height of a random m-ary
search tree have the following asymptotic behaviors for large N ,

〈HN 〉 ≈ am log N + bm log(log N) + . . .

〈hN 〉 ≈ cm log N + dm log(log N) + (1)

While the leading log(N) behavior was proved by Devroye [4] who also computed the coefficients am and cm, the
subleading double logarithmic behavior was conjectured only recently by Hattori and Ochiai [6], who found b2 ≈ −1.9
numerically. Also, the variance and even the higher moments of HN and hN were found to be independent of N for
large N [7,8].

The study of the statistics of nN , on the other hand, is relatively recent [9–11]. Chern and Hwang recently found

[10] that while the average µN = 〈nN 〉 ∼ N for large N (as one should expect), the variance ν(N) = 〈(nN − µ(N))
2〉

undergoes a striking phase transition as a function of m. They found that

ν(N) ∼ N for m ≤ 26

∼ N2θ(m) for m > 26, (2)

where the exponent θ(m) > 1/2 depends on m for m > 26.
The various important results mentioned above were derived by the computer scientists using sophisticated proba-

bilistic methods which, though rigorous, are often not simple. As physicists, one would like to understand and derive
these results in a physically transparent way. Moreover, as it often happens, a physical approach has the advantage
that it can make links with other problems and also the generalization often becomes easier. In a series of recent
papers [12–15], we were able to build up a statisical physical approach to the RmST problem which not only allowed
us to rederive many asymptotically exact results (known previously only via rigorous probabilitic methods) in a phys-
icaly transparent way, but also led to many new results, generalizations and links to other problems. For example, we
were able to generalize our results to other search trees such as the ‘digital search trees’ (DST) (which has links to
the Lempel-Ziv data compression algorithm) and found an exact mapping between the DST and the problem of the
directed diffusion limited aggregation (DLA) problem on the Bethe lattice [16]. The latter problem was first studied
by Bradley and Strenski numerically [17] and remained unsolved for many years. Our approach provides an exact
asymptotic result for this DLA problem [16].

Our strategy was to first map the RmST problem to a random fragmentation problem which was more amenable
to statistical physical analysis. The main new discovery was that the distributions of the height HN and the balanced
height hN , which are ‘extreme’ variables, have a ‘traveling front’ structure. The ‘traveling fronts’ appear in many
physics and biology problems and have been well studied over the past few decades [18]. The techniques developed
in analysing traveling fronts were then useful to derive many asymptotically exact results for the RmST problem.
Subsequently, we found that in many problems where one is interested in finding the statistics of extreme variables,
there is often a ‘traveling front’ structure [19,20].

For the number of non-empty nodes nN , which is not an extreme variable, a different statistical physics approach
(equivalent to a backward Fokker-Planck method) was used which allowed us to understand the mechanism of the
phase transition, the significance of the critical number 26 and calculate the exponent θ(m) exactly [15]. We were also
able to show that this phase transition is rather generic and occurs in other problems as well. Our approach allowed
us to generalize to the case when the data string consists of N D-dimensional vectors. For example, we found that
there is again a phase transition at a critical dimension Dc = π/ sin−1

(

1/
√

8
)

= 8.69363 In the next few sections
we outline our approach and state the main results.

II. MAPPING TO A FRAGMENTATION PROCESS

Our strategy is to first map the problem of RmST to a random fragmentation problem [13,15], which in some sense,
is more familiar to physicists. This fragmentation procedure can then be viewed as a dynamical process and one can
write down its evolution equation fairly easily. This mapping is best understood in terms of an example. Let us take
our favorite data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7} and store it on an m = 3 tree as in Fig. 2 and also shown in the left
half of Fig. 4.

3

TREE CONSTRUCTION FRAGMENTION PROCESS

4, 6

1,2 5 8,9

3 7 10

1 2 3 4 5 6 7 8 9 10

109875321

1 2 3 7 8 9 10

1 2 3 7 10

73 10

3 7

7

FIG. 4. The m = 3 search tree associated with the data string {6, 4, 5, 8, 9, 1, 2, 10, 3, 7} and the corresponding fragmentation
process.

In the fragmentation problem, one starts with a stick (or interval) of length N = 10. Once the first two elements 4
and 6 are stored in the root of the tree, the remaining elements will belong either to the interval [1−3], [5], or [7−10],
which are subsequently completely disconnected from each other. Thus storing the first two elements is equivalent,
in the fragmentation problem, to breaking the original interval [1 − N] of length N into 3 smaller intervals [1 − 3],
[5], and [7 − 10]. The two break points 4 and 6 are chosen uniformly from the N points {1, 2, 3 . . . , N} in the RmST
problem (shown by the arrows in Fig. 4). Next, when the element 5 arrives in the tree, it corresponds to breaking
the interval containing the element 5 randomly into 3 parts (this breaking is not shown explicitly in Fig. 4). The
process is then repeated for other elements. Note that in the fragmentation problem, an interval breaks iff there is a
an element (shown by black dots) inside the interval. Thus there is a threshold phenomenon: if the length of a stick
is too small so that it doesn’t have an element (black dot) in it, one doesn’t fragment it any more. We denote this
theshold length by N0 (In our example, N0 = 1). It just sets the unit of length and its actual value is not important
for the asymptotic large N analysis. Those intervals which still have black dots in them (and thus have lengths > N0)
are thus ‘alive’ and will fragment subsequently, but those whose lengths are < N0 are ‘dead’. Thus, when all the N
elements are stored in the tree, all the intervals in the corresponding fragmentation problem become ‘dead’.

Note that, in the fragmentation problem, at each step (shown by different levels on the right in Fig. 4) there is only
one ‘splitting event’. Each time an interval splits, it corresponds to storing in a node on the tree. Thus completing a
tree is equivalent to ending one ‘history’ of the fragmentation process (at the end of which all intervals are ‘dead’).
Evidently, the number of non-empty nodes nN in the tree is exactly same as the total number of ‘splitting events’ in
the history of the fragmentation process (for example, in Fig. 4 the number of nodes on the tree and the number of
splitting events are both 7). Let li’s denote the lengths of intervals in the fragmentation problem at a given stage.
One can then set up a dictionary between the two problems [13,15] and it is easy to see that

1. Height HN : Prob[HN < n]= Prob[l1 < 1, l2 < 1, . . . after n steps of fragmentation.]

2. Balanced height hN : Prob[hN > n]=Prob[l1 > 1, l2 > 1, . . . after n steps of fragmentation.]

3. Number of non-empty nodes nN : Prob[nN = n]= Prob[there are a total of n ‘splitting events’ till the end of
the fragmentation process.]

III. ANALYSIS OF THE FRAGMENTATION PROBLEM

Once this dictionary is set up, one can forget about the original tree problem and focus on the fragmentation
problem. For simplicity, we will also assume that the lengths of sticks in the fragmentation problem are continuous
variables. This is because the original discrete problem and the continuous problem will have the same asymptotic
properties for large N , but the continuous problem is easier to handle. Thus, in the continuous problem, we start with
a stick of length N where N is large. We break it randomly into m fragments of lengths r1N , r2N , . . ., rmN where
the fractions ri’s are random numbers between [0, 1] that satisfy the length conservation condition,

∑m
i=1 ri = 1. At

this point, we will consider a general problem where the fractions ri’s are drawn from a normalized joint distribution
η(r1, r2, . . . , rm). The RmST problem would correspond to a specific choice of this joint distribution. Note that in the
RmST problem, all the N ! permutations of the original sequence occur equally likely. This means that the first (m−1)
elements are random, each drawn independently and uniformly from [1−N]. In the fragmentation language, this means
that each of the fractions r1, r2, . . ., rm−1 is chosen from a uniform distribution between 0 and 1 and then one sets,
rm = 1−(r1+r2+ . . .+rm−1). This leads to the normalized joint distribution η(r1, r2, . . . , rm) = (m−1)!δ(

∑m
i ri−1)

4

[13]. One of the advantages of our method is that it allows us to obtain exact results for arbitrary joint distribution
of the fraction ri’s, not necessarily only for the uniform case. The RmST problem just corresponds to a special case.

N

FIG. 5. The fragmentation process with continuous lengths for m = 5. The arrows denote the break points.

After the first spliting event, we examine the lengths of each of the m fragments. If the length of a fragment
is already less than N0 = 1, we proclaim it ‘dead’ and it doesn’t split any further. Those fragments with lengths
> N0 = 1 are ‘alive’ and each of those ‘alive’ fragments is further split into m pieces by drawing, for each piece
independently, a set of fractions ri’s from the identical joint distribution η ({ri}) = η(r1, r2, . . . , rm). This process is
then repeated till all the intervals become ‘dead’, i.e., their lengths become < N0 = 1. A pictorial representation is
given in Fig. 5 with m = 5.

For subsequent analysis, it is useful to define the ‘marginal’ distribution η(ri) of any one of the fractions as,

η(ri) =

∫

η ({ri})dr1 . . . dri−1dri+1 . . . drm. (3)

For simplicity, we will assume isotropy, i.e., η(ri) = η(r) is independent of the index i and is thus the same for each
fragment. For example, for the RmST problem, one easily gets [13]

η(r) = (m − 1)(1 − r)m−2. (4)

for 0 ≤ r ≤ 1. Note that for binary trees m = 2, where one breaks a stick into two pieces, one gets η(r) = 1 for
0 ≤ r ≤ 1, the usual uniform distribution for the break point.

A. The Height and the Balanced Height

Let us denote the cumulative height distribution Prob[HN < n] by P (n, N). Using the dictionary outlined before,
we have P (n, N)= Prob [l1 < 1, l2 < 1, . . . after n steps of fragmentation starting with the initial length N] where
li’s are the lengths of the intervals. It is then easy to set up a recursion satified by P (n, N) for the fragmentation
process. Consider the first splitting where we have m new intervals of lengths r1N , r2N , . . ., rmN . Each of these new
pieces will have subsequent histories of evolution completely independent of each other. Hence, it follows

P (n, N) =

∫

[

m
∏

i=1

P (n − 1, riN)

]

η ({ri})dr1dr2 . . . drm, (5)

satisfying the condition, P (n, 1) = 1 for all n ≥ 1 (this follows from the fact that if the initial length is 1, after the
first splitting all the lengths will be < 1). The equation (5) is reminiscent of a backward Fokker-Planck equation. It
is further useful to make a change of variables, t = log(N) and ǫi = − log(ri). The joint distribution of ǫi’s are given
by η̃ ({ǫi})

∏

i dǫi = η ({ri})
∏

i dri. Then the Eq. (5) reduces to,

P (n, t) =

∫

[

m
∏

i=1

P (n − 1, t − ǫi)

]

η̃ ({ǫi})dǫ1dǫ2 . . . dǫm. (6)

The Eq. (5) (or equivalently Eq. (6) is nonlinear and hence is difficult to solve exactly. However, if one plots the
numerical solution of Eq. (5), one finds a traveling front structure as shown in Fig. 6.

5

n

P(
n,

N
)

INCREASING log(N)

TRAVELLING FRONT

FIG. 6. The traveling front structure of the solution of Eq. (5).

This means that the solution at late ‘times’ t has the structure, P (n, t) ∼ f (n − nf (t)), where nf (t) is the position
of the front at ‘time’ t. Note that the front retains its shape as t increases which indicates that the width of the front
remains of O(1) even as t → ∞. The front position advances with a uniform velocity, i.e., nf (t) ≈ vt, to leading order
for large t where the velocity v is yet to be determined. We substitute P (n, t) = 1 − F (n − vt) in Eq. (6) and then
focus near the large n tail where F is small and hence one can linearize the equation to get

F (x) = m

∫

∞

0

F (x − 1 + vǫ)η̃(ǫ)dǫ, (7)

where η̃(ǫ)dǫ = η(r)dr is the effective induced distribution associated with any one of the fractions. This linear
equation clearly admits an exponential solution F (x) = e−λx provided λ is related to v via the dispersion relation,

1 = meλ

∫

∞

0

e−λvǫη̃(ǫ)dǫ. (8)

Thus, in principle, one can have a whole family of possible velocities v(λ) parametrized by λ. However, in practice,
the front has a unique velocity. So, how does one select this unique velocity from a continuous one parameter family
of possible velocities? It turns out that the solution v(λ) of Eq. (8) is a nonmonotonic function of λ with a single
minimum at λ = λ∗ that depends on the distribution η̃(ǫ). According to the velocity selection principle developed
in the traveling front literature [18,20], the front always chooses this minimum velocity v(λ∗) as long as the initial
condition is sharp enough. Thus the leading front position is given by nf (t) ≈ v(λ∗)t where v(λ∗) is obtained by
minimizing v(λ) in Eq. (8) with respect to λ. Moreover, it turns out that the leading front position has an associated
slow logarithmic correction [18],

nf(t) = v(λ∗)t − 3

2λ∗
log(t) + (9)

Note that since Prob[HN < n] = P (n, N), the expected height 〈HN 〉 =
∑

n[1 − P (n, N)] ≈ nf (t) where t = log(N).
This follows from the fact that the front rises sharply from 0 for n < nf (t) to 1 for n > nf (t). Thus, the summation
∑

n[1 − P (n, N)] can be replaced by the front location nf (t). Using Eq. (9), we then get

〈HN 〉 = v(λ∗) log N − 3

2λ∗
log (log(N)) + . . . (10)

This then provides a physical derivation of the result in Eq. (1) where we identify the constant am = v(λ∗) with
the velocity of the front and the constant bm = −3/2λ∗ as the prefactor of the correction term. Note that our result
is more general than the RmST (which is just a special case where the break points are chosen uniformly). Our
derivation also provides a proof for the double logarithmic form of the the correction term previously only conjectured
by Hattori and Ochiai [6].

For the RmST problem, we have η(r) from Eq. (4). This gives, η̃(ǫ) = (m − 1)(1 − e−ǫ)m−2e−ǫ. Substituting this
in Eq. (8), we get the dispersion relation,

m(m − 1)eλB(λv + 1, m − 1) = 1, (11)

where B(m, n) is the standard Beta function. For example, for the binary case m = 2, one gets from Eq. (11),
v(λ) = (2eλ − 1)/λ which has a minimum at λ∗ = 0.76804 . . . with v(λ∗) = 4.31107 One then gets for m = 2 an
exact result,

〈HN 〉 = 4.31107 . . . log N − 1.95303 . . . log (log(N)) + . . . (12)

Similarly, one can derive the exact asymptotic behavior for all m and for arbitrary fraction distribution η(r) [13].
Note that for the binary case m = 2, the same double logarithmic correction term was also found by Reed using
rigorous probabilistic methods [21], but our results seem to be more general.

6

For the balanced height hN , the analysis is similar. The cumulative probability Q(n, N) = Prob[hN > n] satisfies
exactly the same recursion relation as in Eq. (5), except the initial condition is different [13]. One has, Q(n, 1) = 1
for n ≤ 1 and Q(n, 1) = 0 for n > 1. Again, the solution has a traveling front structure, except now it has a [1 − 0]
front as opposed to the [0 − 1] front in the height case. Proceeding along the same path, one obtains the asymptotic
front position and hence the average balanced height,

〈hN 〉 = v(λ∗) log N +
3

2λ∗
log (log(N)) + . . . (13)

where v(λ∗) is determined by maximizing v(λ) obtained from the dispersion relation,

1 = me−λ

∫

∞

0

e+λvǫη̃(ǫ)dǫ. (14)

Note that this dispersion relation is the same as in Eq. (8) provided one changes the sign of λ. This reflects the so
called ‘duality’ between the height and the balanced height [13]. For the m = 2 binary case, we get from Eq. (14),
v(λ) = (1 − 2e−λ)/λ which has a maximum at λ∗ = 1.67835 . . . and v(λ∗) = 0.373365 This gives [13],

〈hN 〉 = 0.373365 . . . log N + 0.89374 . . . log (log(N)) + . . . (15)

Note that the sign of the correction term is different in Eqs. (12) and (15). Similarly, one can derive exact asymptotic
results for all m as well for any arbitrary distribution η(r).

B. Number of Non-empty Nodes

We now turn to the statistics of the number of non-empty nodes nN required to store a data string of size N . Once
again, the fragmentation representation turns out to be useful. One can easily write down a recursion relation for nN

by noting that nN is just the total number of spilitting events in the fragementation process till it stops, given that
it started with an initial stick of length N . After the first spliting one has m pieces of lengths r1N , r2N , . . ., rmN
whose subsequent histories are completeley independent of each other. Note that an interval splits iff its length is
> N0 where N0 is the threshold length. Evidently, if the starting length N < N0, nN = 0 since there would not be
any splitting. However, if N > N0, one can write a recursion [15],

nN ≡ nr1N + nr2N + . . . + nrmN + 1, (16)

where the fractions ri’s are again random numbers satisfying
∑m

i=1 ri = 1 that are drawn from a joint distribution
η ({ri}). The term 1 on the right hand side of Eq. (16) just counts the first splitting and the rest of the terms count
the total number of subsequent splitting events arising from each of the m pieces generated after the first splitting.
The ≡ symbol represents ‘equivalence in law’, i.e., the left and the right hand side of the ≡ symbol have the same
probability distribution.

Taking average on both sides of Eq. (16), one finds that the average number of nodes or the ‘splitting events’
µ(N) = 〈nN 〉 satisfies an integral equation [15]

µ(N) = m

∫ 1

N0/N

µ(rN)η(r)dr + 1. (17)

This integral equation can be solved exactly [15]. One finds that, µ(N) = g(N/N0) where the scaling function g(z) is
given by

g(z) = α0 + α1z +

∞
∑

k=2

αkzλk , (18)

where λk’s are the roots of the following equation with Re(λk) < 1 ,

m

∫ 1

0

rλη(r)dr = 1. (19)

7

Note that λ = 1 is always a root of Eq. (19). This follows from the following observation. By averaging the sum rule,
∑m

i=1 ri = 1 one gets 〈r〉 = 1/m which shows that λ = 1 is always a solution of Eq. (19). In fact, the linear term in
Eq. (18) corresponds to this root at λ = 1. Furthermore, one can prove that all the others roots λk’s are complex, if
λk is a root its complex conjugate λ∗

k is also a root and all these other roots lie in the complex λ plane to the left of
the imaginary line at λ = 1 + iz, i.e., Re(λk) < 1. The leading behavior of the average for large N is given by the
linear term and one gets, µ(N) ∼ α1N/N0 where

α1 = − 1

m
∫ 1

0
r log(r)η(r)dr

. (20)

For the RmST problem, we have η(r) = (m − 1)(1 − r)m−2 which gives, α1 = 1/
∑m

k=2 1/k.

For the variance ν(N) = 〈(nN − µ(N))
2〉, one can similarly write down a recursion relation [15] starting from Eq.

(16),

ν(N) = m

∫ 1

N0/N

ν(rN)η(r)dr + J, (21)

where J represents a ‘source’ term that depends on the form of the first moment µ(N). More precisely, if S =
∑m

i=1 µ(riN), then J = 〈(S − 〈S〉)2〉. The significant fact about this problem is that the equation for the second
moment ‘closes’ in the sense that it involves only second and first moments, but not higher moments. It does not
have the usual hierarchy problem that one often encounters in statistical mechanics problem. This fact makes this
problem analytically tractable. This source term J also turns out to be responsible for driving the ‘phase transition’
in the variance. This is a new mechanism of phase transition that one has not encountered before in other problems.

Using the exact solution for the first moment µ(N) from Eq. (18), one can evaluate the source term J which turns
out to be only a function of z = N/N0 and for large z one gets,

J(z) ≈ β1z
2λ2 + β2z

2λ∗
2 + β3z

λ2+λ∗
2 + . . . (22)

where λ2 (and its complex conjugate λ∗

2) are the nearest zeros of the equation, m
∫ 1

0 rλη(r)dr = 1 to the left of the
line Re(λ) = 1 in the complex λ plane. Substituting this asymptotic behavior of J(z) in Eq. (21) and solving the
integral equation, one finds that ν(N) = Y (N/N0) where the asymptotic behavior of Y (z) for large z depends on the
value of Re(2λ2). One finds that as z → ∞, Y (z) ∼ z (as in the case of the first moment) provided Re(2λ2) < 1. In
this case, the source term J turns out to be insignificant and gives rise only to subleading correction terms. However,
if Re(2λ2) > 1, the source term J(z) becomes significant and controls the asymptotic behavior of Y (z) and one gets,
Y (z) ∼ z2θ where θ = Re(λ2).

Note that the root λ2 is a function of m. As one tunes m, λ2 changes but always stays to the left of the line
Re(λ) = 1 in the complex λ plane. However, for small m, Re(2λ2) < 1, i.e., λ2 stays to the left of the line Re(λ) = 1/2.
Then as m exceeds a critical value mc, λ2 crosses the line Re(λ) = 1/2 from its left to its right and Re(2λ2) > 1,
leading to a phase transition in the large N behaviour of ν(N). Thus the critical value of mc is determined from
the condition, Re(λ2) = 1/2. For the RmST problem, substituting η(r) = (m − 1)(1 − r)m−2 in Eq. (19) one gets,
m(m − 1)B(m − 1, λ + 1) = 0. One then obtains λ2 using the Mathematica. Setting Re(λ2) = 1/2 determines the
critical value, mc = 26.0561 Note that, once we have written down the moment equations, m can be treated as a
continuous parameter, even though in actual search trees m is always an integer. We thus get a very general result,

ν(N) ∼ N for m ≤ mc

∼ N2θ(m) for m > mc, (23)

for arbitrary breaking distribution η(r) where mc is determined from Re(λ2) = 1/2 and θ(m) = Re(λ2) where λ2 is
determined from Eq. (19). For the RmST case in particular, we get mc = 26.0561

Thus, we have identified a simple mechanism (driven by the source term) of a rather striking and nontrivial phase
transition in a generic fragmentation problem [15]. There is a physical meaning associated with this phase transition.
For m < mc, the fluctuation (variance) in the number of splitting events scales as N for large N and the central limit
theorem holds. In fact, one finds that the full distribution of nN is Gaussian for m < mc. However, for m > mc,
rare events give rise occasionally to huge fluctuations. In the language of the fragmentation problem, note that the
effective distribution of the fraction η(r) = (m − 1)(1 − r)m−2 gets highly localized around r = 0 for large m. This
means that for large m, most of the m fragments have very tiny lengths (which thus become ‘dead’) except one which
has a huge length (due to the length conservation condition,

∑m
i=1 ri = 1). Thus this large piece will persist for a long

time and one will get a huge number of splitting events. This qualitative argument, of course, does not explain why
there is a sharp phase transition. For that, one has to carry out explicit calculations as done here.

8

IV. GENERALIZATION TO VECTOR DATA STRING

So far, we have considered the storing of a data string of size N on a tree where each element of the data is a
scalar. A natural generalization of this is when the data consists of a string of N D-dimensional vectors. For example,
suppose we have the following data of 2-dimensional vectors: {(6, 4), (4, 3), (5, 2), (8, 7), . . .}. How do we store this
data on a tree? The corresponding tree is known as a quad-tree in the computer science literature [22]. To store
this data, one imagines a N × N square. The first key (6, 4) is stored at the co-ordinate (6, 4) of this square and
it forms the root of the tree. This root has now 4 branches corresponding the 4 quadrants around the point (6, 4).
Note immediately the analogy to a corresponding fragmentation problem. the storing of the first vector corresponds
to fragmenting the original N × N square into 4 rectangles which join each other a (6, 4) (see Fig. 7). This is the
generalization of breaking a one dimensional stick in the scalar case. Since both the components 6 and 4 are chosen
independently and randomly from the set {1, 2, 3, . . . , N}, this becomes a random fragmentation problem where the
side lengths of any one of the 4 rectangles are chosen uniformly from the interval [0 − N].

1 2 3 4 5 6 7

1

2

3

4

5

6

7

N

N
2

1

QUAD−TREE

(6, 4)

(4, 3)

splitting due to (6, 4)

splitting due to (4, 3)

FIG. 7. The storing of (6, 4) and (4, 3) on a quad tree → square fragmentation process.

The next element (4, 3) arrives and storing (4, 3) is equivalent to the fragmentation of the rectangle containing the
new point (4, 3) into 4 further smaller rectangles. This process continues till all the data is stored, i.e., when the areas
of all the rectangles become smaller than some threshold value A0 = 1. One immediately sees the generalization to
the case where each data element is a D-dimensional tuple. In the corresponding fragmentation problem, one starts
with a D-dimensional cuboid of side lengths N and the arrival of each data corresponds to fragmenting a cuboid into
2D number of smaller cuboids. Note that D = 1 corresponds to the binary search tree of the scalar data, discussed
before.

Following similar routes as in the m-ary search tree case, we were able to determine the exact asymptotic properties
of the height HN , the balanced height hN and the number of non-empty nodes nN of a D-dimensional quad-tree.
We just mention our main results here without providing details since they are similar to the earlier cases. For the
extreme variables such as the height HN and the balanced height hN , we again find a traveling front structure whose
analysis provides us with the following exact asymptotics for large N ,

〈HN 〉 = 4.31107 . . . log N − 1.95303 . . .

D
log(D log N) + . . .

〈hN 〉 ≈ 0.373365 . . . log N +
0.89374 . . .

D
log(D log N) + (24)

Surprisingly, the leading behavior (especially the coefficients of log(N) terms) turns out to be independent of the
dimension D. Besides, due to the existence of a traveling front structure, one immediately finds that the all the
higher moments including the variance of HN and hN are bounded ∼ O(1) for large N .

9

90 190 290 390
n(x) (with x= 1000)

0

0.01

0.02

0.03

p(
n(

x)
)

D=10

D=8

FIG. 8. The distribution of the number of splittings of a cuboid with sidelength N = x = 1000 for D = 8 (filled circles) and
for D = 10 (filled squares). The distribution is Gaussian for D = 8, but has a non-Gaussian skewness for D = 10. Note that
the theoretically predicted critical dimension is Dc = 8.69363 The histogram was formed by numerically splitting 5 × 105

samples in each case.

For the number of nodes nN , we again find a phase transition [15] driven by the same mechanism mentioned earlier.
We find that while the average number of non-empty nodes µ(N) = 〈nN 〉 ≈ 2V/D for large N where V = ND,

the variance ν(N) = 〈(nN − µ(N))
2〉 undergoes a phase transition at a critical value of Dc = π/ sin−1

(

1/
√

8
)

=
8.69363 . . .,

ν(N) ∼ V for D ≤ Dc

∼ V 2θ(D) for D > Dc, (25)

where V = ND and we computed the critical exponent θ(D) ≥ 1/2 exactly [15]

θ(D) = 2 cos

(

2π

D

)

− 1 (26)

which increases monotonically with D for D > Dc. Furthermore, we computed numerically the full distribution of
nN for different values of D and found that while the distribution is Gaussian for D < Dc (a fact that can also be
proved analytically), it becomes non-Gaussian for D > Dc (see Fig. 8). As before, once we write down the moment
equations, D can be treated as a continuous parameter though in actual vector data D represents the dimension of a
vector element and therefore D is always an integer.

V. CONCLUSION

In this paper, we have demonstrated how a variety of techniques developed in statistical physics can be successfully
used to understand the statistical properties of various search trees, in particular for the random m-ary search tree
problem. Search trees are the basic objects in data storage and retrieval. Hence we expect that our results will
have important consequences in the ‘sorting and searching’ area of computer science. Our approach, perhaps not
rigorous in the strict mathematical sense, has the advantage that it provides a physically transparent derivation of
asymptotic results and can be readily generalized to study different types of search trees. For example, the traveling
front method has subsequently been used to study the so called ‘digital search tree’ that are used in the Lempel-Ziv
data compression algorithm [16]. Besides, our approach has the beauty that it makes links between seemingly different
problems and provides us with new results such as those for the vector data. We hope that the techniques discussed
in this paper would be useful in future for studying other problems in computer science.

10

[1] D.E. Knuth, The Art of Computer Programming, Sorting and Searching, 2nd ed. (Addison-Wesley, Reading, MA, 1998),
vol. 3.

[2] J.M. Robson, Austr. Comput. J. 11, 151 (1979).
[3] P. Flajolet and A. Odlyzko, J. Comput. system. Sci. 25, 171 (1982).
[4] L. Devroye, J. Assoc. Comput. Mach. 33, 489 (1986); Acta Inform. 24, 277 (1987).
[5] H.M. Mahmoud, Evolution of Random Search Trees (Wiley, New York, 1992).
[6] T. Hattori and H. Ochiai (unpublished).
[7] J.M. Robson, Theor. Comput. Sci. 276, 435 (2002).
[8] M. Drmota, J. Assoc. Comput. Mach. 50, 333 (2003).
[9] H.M. Mahmoud and B. Pittel, J. Algorithms. 10, 52 (1989).

[10] H-H Chern and H-K Hwang, Random Struct. Algorithms 19, 316 (2001).
[11] B. Chauvin and N. Pouyanne, Random Struct. Algorithms 24, 133 (2004).
[12] P.L. Krapivsky and S.N. Majumdar, Phys. Rev. Lett. 85, 5492 (2000).
[13] S.N. Majumdar and P.L. Krapivsky, Phys. Rev. E 65, 036127 (2002).
[14] E. Ben-Naim, P.L. Krapivsky, and S.N. Majumdar, Phys. Rev. E 64, 035101(R) (2001).
[15] D.S. Dean and S.N. Majumdar, J. Phys. A: Math. Gen. 35, L501 (2002).
[16] S.N. Majumdar, Phys. Rev. E 68, 026103 (2003).
[17] R.M. Bradley and P.N. Strenski, Phys. Rev. B 31, 4319 (1985).
[18] For a recent review see W. van Saarloos, Phys. Rep. 386, 29 (2003).
[19] S.N. Majumdar and P.L. Krapivsky, Phys. Rev. E 62, 7735 (2000); Phys. Rev. E 63, 045101 (R) (2001); D.S. Dean and

S.N. Majumdar, Phys. Rev. E 64, 046 121 (2001).
[20] For a brief review, see S.N. Majumdar and P.L. Krapivsky, Physica A 318, 161 (2003).
[21] B. Reed, J. Assoc. Comput. Mach. 50, 306 (2003).
[22] R.A. Finkel and J.L. Bentley, Acta Inform. 4, 1 (1974); P. Flajolet, G. Gonnet, C. Puech, and J.M. Robson, Algorithmica,

10, 473 (1993).

11

